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Abstract

Background: Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-
state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This
correlation assumes that steady-state is maintained uniformly throughout the heart in space and time.

Purpose: To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine
bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions.

Material and Methods: Nine healthy volunteers completed cardiac MRl on a |.5-T scanner. Short axis images were
taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below
selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to
longitudinal shortening.

Results: For 2D cine bSSFP, 46% + 9% of all frames and 84% == 1 3% of end-diastolic frames remained within 10% of initial
signal intensity. For 3D cine bSSFP the proportions increased to 87% £ 8% and 97% =+ 5%. There was no correlation
between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted
peak changes in signal intensity for 2D sequences (P < 0.001).

Conclusion: The initial longitudinal slice location significantly impacts the magnitude of deviation from steady-state in
2D cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is
established similar to that achieved with 3D cine bSSFP regardless of slice location.
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Introduction

Balanced steady-state free precession (bSSFP) imaging
(1) has become the clinical standard technique for car-
diac magnetic resonance imaging (CMRI) due to excel- _
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as mapping of native-T1 relaxation times (7) and blood
oxygen level dependent (BOLD) imaging (8), are
increasingly used for quantitative CMRI. Although
the underlying mechanisms of cine bSSFP imaging
are well modeled and understood (9,10), it has been
shown that measured signal intensity values in the myo-
cardium diverge substantially from the predicted signal
intensities (11). While some of the discrepancies can be
attributed to imperfections in magnetic field homogen-
eity, non-ideal pulse profiles, magnetization transfer
(MT), and off-resonance effects due to proximity to
other organs such as lungs (11), Goldfarb et al. previ-
ously demonstrated that changes in myocardial signal
intensity throughout the cardiac cycle exhibit a cyclical
pattern that results in a transient steady-state in the
myocardium (12). Cardiac motion even in the presence
of gating has long been shown to impact signal intensity
and relaxation times (13). However, previous studies
have only explored such factors in a single mid-
ventricular imaging slice without taking into account
the complex three-dimensional (3D) motion of the
heart during the cardiac cycle. The contributions of
the initial longitudinal slice position of axial imaging
slices and of longitudinal shortening during the cardiac
cycle to the evolution of steady-state myocardial signal
in two-dimensional (2D) cine bSSFP remain unex-
plored. As quantitative CMRI methods are increasingly
applied to whole heart imaging, it is important to fully
understand the factors that contribute to changes in
signal evolution that may confound measurements
derived from such methods.

The purpose of this study was to examine the impact
of the initial longitudinal slice position within the heart
and peak longitudinal shortening during contraction on
the evolution of steady-state magnetization in 2D cine
bSSFP by comparison to 3D volume (slab) cine
bSSFP. We hypothesized that cyclical deviation from
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steady-state signal in 2D cine bSSFP is a function of the
initial longitudinal position of the axial imaging slice.
We further hypothesized that using 3D cine bSSFP
sequences can eliminate the impact of slice location
on deviation from steady-state signal.

Material and Methods
Scan protocol

Nine healthy adult male volunteers with no history of
tobacco use or cardiovascular disease (mean age =25.7
years, age range =23-29 years) completed CMRI on a
1.5T Siemens Aera scanner (Erlangen, Germany) using
an 18-channel body coil and 12-channel spine coil.
Additional system specifications included gradient
strength of 45mT/m and slew rate of 200 T/m/s. The
local Institutional Review Board approved the study.
All participants were informed and consented prior to
scanning. Localizing scans, including a four-chamber
cine, were performed to acquire a single short axis
stack spanning from left ventricular base to apex con-
sisting of nine §-mm thick slices. Starting at the most
basal position of the left ventricle in which the ventricu-
lar myocardium was contiguous throughout the cardiac
cycle, every other slice was used as the center of a 3D
cine bSSFP acquisition (slab) consisting of six 8-mm
thick slices across a total of three slabs (Fig. 1).
Additional scan parameters include: TR/TE=34/
1.46ms, field of view (FOV)=260 x 260 mm?, flip
angle = 50°, matrix =256 x 256, in-plane spatial reso-
lution=1 x 1 mm?, number of averages = 1, acceler-
ation factor=2, phase sampling=75%. Prospective
electrocardiogram triggering was used. In parallel, a
stack of corresponding 2D cine bSSFP acquisitions
were performed at slice locations corresponding to the
same location as the two center slices of each slab
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Fig. 1. (a) Long axis, four-chamber end-diastolic image of the heart with a superimposed schematic of the slab and slice architecture
for one representative slab. (b) Normalized signal intensity waveforms for all six slices in one 3D slab are shown throughout the entire
cardiac cycle. Solid lines represent the middle two slices (slice 3 and 4) which were used for all other analyses of 3D images.
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(Fig. 1). All acquisition parameters were maintained for
2D imaging except TR/TE (3.2/1.2 ms). All acquisitions
were single breath-hold acquisitions across both proto-
cols. The mean scan time for a single 3D slab was 21 s
and for a single 2D slice was 9s. Total scan time for
each individual was roughly 30 min.

Image analysis

All data analysis was performed using custom written
software in Matlab version 2013a (Mathworks, Natick,
MA, USA). Epicardial and endocardial borders were
defined for each cardiac phase using a custom feature
tracking algorithm (14) and the average myocardial
signal intensity was measured for both 2D and 3D
acquisitions. All myocardial voxels within the two bor-
ders were used to calculate a mean signal intensity.
The dynamic change from the initial myocardial
signal (Sy) was defined as AS;=S;/Sy, where S; is the
average myocardial signal intensity at each cardiac
phase i. A single cardiac phase was identified as main-
taining steady-state if the signal intensity S; was within
10% of Sy. For each slice and acquisition mode, the
deviation from steady-state was quantified by measur-
ing the ratio of cardiac phases with changes in signal
intensity greater than 10% to the total number of
phases in that acquisition. Identical analysis was per-
formed over diastolic phases representing the last 30%
of the cardiac cycle. Temporal information was gath-
ered from trigger time and cardiac interval recorded at
the time of scan.

Separately, a single observer used the same custom
feature tracking algorithm (14) to define the apex and
mitral valve insertion points on each phase of a four-
chamber cine series for each participant. The mitral
plane was defined by the line between these connection
points. The distance from the midpoint of this mitral
line to the apex was used to define the longitudinal
length (L) of the heart as described in (195).
Longitudinal shortening was defined as AL; =L, — L;
for each phase i. In order to reduce variability in the
definition of L and L;, two observers defined the apex
and mitral valve plane on the same four-chamber cine
images in the first phase and at end systole. Average
peak AL; between observers was used for analysis. End-
systolic images were overlaid on the first frame and the
distance between the points defining the apex were used
to define displacement of the apex. This process was
repeated using the midpoints defined from the mitral
valve insertion points. Local signal maxima corres-
ponding to systole and the end of diastolic filling were
identified from each AS; waveform for both 2D and 3D
imaging. Signal maxima were compared to the initial
slice location, measured from the mitral plane, and to
maximum AL, for each individual.

Statistical analysis

Statistical analysis was completed using IBM SPSS
Statistics Version 22 (IBM Corp, Armonk, NY,
USA). Student’s t-tests were used to compare ratios
of total and diastolic phases within 10% of Sy as well
as maximum signal changes between 2D and 3D acqui-
sitions. Linear regressions were used to compare max-
imum AS; at both end systole and late diastolic filling
against slice location. Pearson correlations were used to
compare maximum AS; at both end systole and late
diastolic filling. Data are presented as mean =+ standard
deviation. For all comparisons, P <0.05 was con-
sidered significant.

Results
Steady-state characteristics within a 3D slab

Examination of AS; across all slices within 3D slabs
revealed preservation of steady-state magnetization
predominantly within the two middle slices (slices 3
and 4). Representative AS; waveforms for all slices
within a 3D slab centered at the mid-ventricle are
shown in Fig. 1 and demonstrate substantial deviation
from steady-state values in outer slices. In parallel,
image quality was significantly reduced in slices at the
borders of the 3D volume as shown in Fig. 2.
Noticeable artifacts were observed in the anterior and
lateral walls, and blurring was observed in the septum
and inferior wall in images acquired at slice positions 1,
2, 5, and 6 within a 3D volume. Based on these findings,
all comparisons of signal evolution were performed
between 2D cine bSSFP and corresponding 3D data
when the slice was acquired at the center of the 3D
slab (slices 3 and 4).

Signal evolution

Sample images at end-diastole, peak systole, and late
diastolic filling acquired with 2D and 3D cine bSSFP
are shown in Fig. 3. Corresponding AS; waveforms
demonstrate substantial changes in myocardial signal
intensity in 2D cine bSSFP throughout the majority
of the cardiac cycle that are not present in the 3D
acquisition. Across all individuals and slices, nearly
all cardiac phases demonstrated myocardial signal
intensity within 10% of initial values for 3D cine
bSSFP acquisitions (Fig. 4). In comparison, corres-
ponding measurements for images acquired with 2D
cine bSSFP were preserved in approximately half of
cardiac phases (Fig. 4). During the last 30% of the
cardiac cycle, both 2D and 3D bSSFP acquisitions
result in a high percentage of phases with signal inten-
sity within 10% of initial signal intensity (Fig. 4).
However, this value was significantly higher in 3D
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Fig. 2. Representative end-diastolic images acquired with 2D and 3D cine bSSFP for all slices in a 3D slab as shown on the long axis
image in Fig. |. 3D images come from a single slab acquisition and display artifacts and reduction of image quality in outer slices (I, 2, 5,
and 6) when compared to corresponding 2D cine bSSFP images.
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Fig. 3. (a) Representative mid-ventricular images at end-diastolic (initial phase), end-systolic, and diastolic filling phases of the cardiac
cycle acquired at the same slice position using 2D (top) and 3D acquisitions (bottom). All images are windowed and leveled identically
in order to reveal changes in myocardial signal intensity. Images acquired using 2D cine bSSFP demonstrated substantially increased
myocardial signal intensity at end-systole and during diastolic filling compared to end-diastole. In contrast, myocardial signal intensity is
similar at end-diastole, peak systole, and during diastolic filling when images are acquired with 3D cine bSSFP. (b) Normalized signal
intensity waveforms from 2D and 3D acquisitions for the slice shown in (2) and the adjacent slice at the center of the 3D slab

demonstrate the degree of deviation from steady-state in 2D cine bSSFP as a function of cardiac phase. Despite significant deviation
from initial values, myocardial signal intensity returns to steady-state values by the conclusion of the cardiac cycle in 2D cine bSSFP.
The longitudinal length (L) during the cardiac cycle in this individual is plotted on the same time scale for purposes of comparison.
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o
2

p=0.02 p < 0.001
—

0.5
04
0.3
0.2
0.1
0
-0.1
-0.2

(AU)

Maximum AS;

signal intensity within 10% of the initial signal intensity is significantly

higher in 3D cine bSSFP compared to 2D cine bSSFP acquisitions. (b) A higher proportion of cardiac phases demonstrates myocardial
signal intensity within 10% of initial signal intensity in 2D cine bSSFP when examination is limited to only the last 30% of the cardiac
cycle (diastolic phases). However, there remains a statistically significant difference between 2D and 3D cine bSSFP acquisitions. (c)
Maximum AS; across the entire cardiac cycle is significantly greater in 2D compared to 3D cine bSSFP. Error bars represent one

standard deviation.
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Fig. 5. Magnitude of longitudinal shortening does not influence deviation from steady-state signal intensity when accounting for initial
slice position. Peak systolic (top) and diastolic (bottom) changes in normalized myocardial signal intensity are shown as a function of

maximum longitudinal shortening (AL) for both 2D and 3D cine

bSSFP. Analysis using Pearson correlations (Table |) revealed no

meaningful correlation between maximal longitudinal shortening and peak signal changes when the initial longitudinal position of the

2D imaging slice was taken into account.

acquisitions compared to 2D cine bSSFP (Fig. 4). The
maximum deviation from the initial signal intensity was
uniformly significantly higher in 2D acquisitions com-
pared to corresponding 3D acquisitions (Fig. 4).

Longitudinal shortening and slice location

Comparison of the maximum change in signal intensity
at both peak systole and during diastolic filling to the
maximum change in length of the left ventricle revealed
no significant correlation when accounting for the ini-
tial longitudinal position of the imaging slice (Fig. 5),
though 2D imaging at peak systole was trending
towards significant (P =0.07). Corresponding Pearson

correlation statistics are found in Table 1. The average
maximal longitudinal displacement of the mitral plane
was 9.09 £ 1.51 mm, compared to 3.60 + 1.29 mm at the
apex, as measured on the four-chamber cine. The range
of AL; across all patients was 1.79 mm. The initial lon-
gitudinal slice position within the heart, measured as
the distance from the mitral valve, demonstrated a sig-
nificant and negative correlation (P < 0.001) with peak
systolic AS; in 2D cine bSSFP (Fig. 6). The average
difference in peak systolic AS; between the most basal
and apical slices was 0.221 £0.163 (AU). In contrast,
no correlation was found when images were acquired
using 3D cine bSSFP (Fig. 6). For both 2D and 3D cine
bSSFP, the peak AS; during the period of diastolic
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Table 1. Pearson correlation statistics for longitudinal shortening and maximum signal changes (maximum AL; vs. peak AS;)

Pearson rho (p)

Acquisition Slab 2 Slab 3 Slab 4
Systole 2D 0.669 (0.070) 0.652 (0.057) 0.445 (0.230)
3D 0.532 (0.175) —0.116 (0.765) —0.318 (0.404)
Diastolic filling 2D 0.559 (0.150) 0.419 (0.261) 0.609 (0.082)
3D 0.639 (0.088) 0.555 (0.121) 0.230 (0.552)

The Pearson coefficient (rho) represents the strength of correlation, while
observed correlation.
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Fig. 6. The maximum change in myocardial signal intensity at peak systole is correlated to the initial longitudinal position of the
imaging slice in 2D cine bSSFP. (a) The average peak change in myocardial signal intensity at systole is greatest at the base of the left
ventricle and diminishes significantly towards the apex in 2D cine bSSFP (P < 0.005 for linear regression analysis). For purposes of
comparison, the corresponding measures using 3D cine bSSFP demonstrate maintained steady-state values at peak systole across all
initial slice positions. (b) During diastolic filling, the peak signal change in 2D cine bSSFP is uniformly elevated across all initial slice
positions (P =0.068). (c) Representative waveforms of normalized myocardial signal intensity acquired with 2D cine bSSFP for six slices
across heart demonstrate the gradient in peak systolic signal change with similar peak diastolic signal change. The distance (mm) from

the mitral valve for each slice measured at end-diastole is shown in
statistics can be found in Table 2.

filling did not demonstrate a significant correlation with
slice position (Fig. 6, Table 2). Representative AS;
waveforms for multiple 2D acquisitions at incremental
slice positions demonstrate the gradient from base to
apex in peak systolic AS; and consistent peak AS;
during diastolic filling (Fig. 6).

the legend. Error bars indicate one standard deviation. Linear fit

Discussion

In this study, we examined the influence of initial lon-
gitudinal slice position and global longitudinal shorten-
ing in modulating steady-state signal evolution in 2D
cine bSSFP. Our findings revealed that the initial
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Table 2. Linear regression statistics for maximum signal
changes and slice locations (maximum AS; vs. slice location).

Systole Diastolic filling

2D 3D 2D 3D
Slope (AU/mm) —0.005 0.000 —0.002 0.001
Y-int (AU) 1.53 0.987 1.415 0.948
R 0.266 0.003 0.066 0.012
P value <0.001 0.708 0.068 0.449

longitudinal slice position plays a determining role in
the peak deviation from steady-state during systole in
2D cine bSSFP. In contrast, the magnitude of global
longitudinal shortening does not appear to influence
the deviation from steady-state. Importantly, despite
significant deviations from steady-state early in the car-
diac cycle, the majority of 2D acquisitions had returned
to initial steady-state signal intensity by the end of
diastole.

While we found no correlation between AS; and
global longitudinal shortening, the significant impact
of the initial slice location in 2D cine bSSFP imaging
implies that slice-specific through-plane motion may
contribute to patterns of deviation from steady-
state. During the cardiac cycle, the base of the heart
undergoes greater translation compared to the apex,
which displays more torsional motion (16). In a given
slice, the proportion of non-steady-state spins through-
out the cardiac cycle will be most impacted by the mag-
nitude of through-plane motion. This pattern of
through-plane motion likely underlies the gradient in
maximum deviation from steady-state observed in this
study.

Increasingly, bSSFP approaches are being imple-
mented for quantitative CMRI techniques including
imaging of myocardial perfusion (17,18), diffusion-
weighted imaging (19), and for measurement of ven-
tricular T1 (20) and T2 (21) relaxation times. In add-
ition, several studies have examined the utility of atrial
signal intensities on cine bSSFP imaging for surgical
planning with catheter ablation (21-23). In such appli-
cations, the deviation from steady-state magnetization
as a function of slice position when using 2D cine
bSSFP can potentially influence the results derived
from such scans. For example, a recent study by
Goldfarb et al. concluded that for late gadolinium-
enhanced (LGE) imaging with 2D cine bSSFP, the
end-systolic image produced the greatest difference in
signal between edematous and healthy myocardial
tissue (12). Although this study examined the cyclic
patterns of signal deviation as a function of anatomical
position within a single short axis slice containing an
infarct, the degree of systolic enhancement observed

may depend largely on the longitudinal position of
the infarct. As another example, it has been shown
that T1 measurements can be consistently lower if
measured during end systole compared to end-diastole
(24,25). While these studies do not explore the under-
lying cause of these changes, it is thought to be a result
of cardiac motion and partial volume effects.

A potential method to reduce the influence of
through-plane motion of the heart is to use 3D cine
bSSFP, which has demonstrated similar diagnostic
capacity in assessing global left ventricular structure
and function to 2D cine bSSFP (26) alongside shorter
overall scan time (27). However, our results reveal that
while myocardial steady-state signal is well maintained
regardless of longitudinal slice position when using 3D
cine bSSFP, this is only valid at the center of the
excited volume. Using conventional, non-accelerated
3D imaging, it was necessary to overlap the 3D
slabs to such an extent that each slice was in effect
acquired three times, with only one acquisition provid-
ing maintained steady-state. The deviation from
steady-state as a function of position within a 3D
volume, alongside increased breath-hold durations
required for large 3D volumes, should be weighed
when quantitative approaches necessitate properly
maintained steady-state magnetization in the myocar-
dium. However, use of accelerated imaging techniques
and/or compressed sensing, or use of free-breathing
imaging, could enable the acquisition of larger 3D
volumes, thereby increasing the inner slab thickness
in which steady-state is maintained.

One limitation to the current study was that we
were unable to perform myocardial tagging or cine
DENSE imaging in order to obtain accurate measure-
ments of longitudinal displacement for each of the
imaging slices. In addition, our study population was
limited to only healthy individuals and did not include
those with prior myocardial infarction who would
demonstrate altered longitudinal shortening. Future
studies that include patients with acute myocardial
infarction could further probe both the role of longi-
tudinal shortening and 3D cine bSSFP imaging for
quantitative tissue characterization and perfusion ima-
ging. Finally, we chose to use prospective gating
and not retrospective triggering in order to remove
the impact of heart rate on reconstructed cine
frames that would be mitigated by retrospective
triggering.

In conclusion, the deviation from steady-state in
2D cine bSSFP imaging is most significantly affected
by the initial longitudinal position of the imaging
slice within the heart. Using 3D cine bSSFP acquisi-
tions can reduce signal fluctuations throughout the car-
diac cycle as long as a sufficiently large excitation
volume is used.
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